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ABSTRACT

The effect of device noise on oscillator phase noise in
a close vicinity of average oscillator frequency is analyzed.
We show that for 1/f noise, the line shape of a free-running
oscillator changes from power to approximately Gaussian
function very close to the oscillator frequency. The Gaus-
sian regime occurs when the relationship between device
noise and oscillator spectrum is strongly nonlinear. As this
relationship approaches linear dependence at higher frequency
deviation, there occurs a smooth crossover from Gaussian to
well-known power line shape. The commonly used power
extrapolation turns out to significantly underestimate phase
noise in a part of the near-carrier frequency range.

We also analyze how the near-carrier spectrum of the
phase-locked oscillator is affected by the nonlinearity in the
dependence of the oscillator spectrum on phase fluctuations.
In particular, near-carrier noise suppression of a voltage-
controlled oscillator in the second-and-higher-order phase-
locked-loop is less than predicted by the linear model or
even absent, unless the phase jitter is small.

The proposed theory reduces to existing quantitative mod-
els of near-carrier phase noise in oscillators when the rela-
tion between noise in the oscillator phase and the output
spectral density is linear.

1. INTRODUCTION

Phase noise in oscillators is a crucial limiting factor in many
applications, such as wireless communications and frequency
standards. It is especially important at frequencies close to
the average oscillator frequency!0, where significant spec-
tral power is concentrated.

According to [2, 3, 4], under certain conditions, device
noise with a power spectral density proportional to!��

leads to the power shape of oscillator spectrum given by

SV (!) / j! � !0j�+2 : (1)

The power law cannot hold as! approaches!0, since the to-
tal output power, which is hardly affected by noise, is finite.
The deviation from power dependence occurs at frequencies

very close to!0, where the oscillator output is a nonlinear
function of injected noise. For white Gaussian noise� = 0,
the oscillator line shape is Lorentzian [1], and power extrap-
olation of Eq. (1) overestimates phase noise near!0. For
purelyf�� noise, with� � 1, we demonstrate that the re-
sulting oscillator spectrum is approximately Gaussian in a
very narrow range around!0 between the power tails.

In section 2, we provide both heuristic explanation and
rigorous analytical derivation of the line shape of free-running
oscillators in the Gaussian and power regions and estimate
the crossover frequency between them. Lineshape of locked
oscillators is discussed in section 3 followed by a brief sum-
mary in section 4. In the Appendix, we specify the fre-
quency range where the oscillator spectrum is determined
by the (frequency) modulation noise.

2. PHASE NOISE OF A FREE-RUNNING
OSCILLATOR DUE TO NOISE SOURCE WITH

POWER SPECTRUM

As shown in the Appendix, there exists a frequency range
close to unperturbed oscillator frequency!0, in which am-
plitude noise is negligible in comparison with phase noise,
and the oscillator lineshape is determined by the slow ran-
dom modulation of the moving average of oscillator instan-
taneous frequency(
(t) + !0). The size of this frequency
range is usually determined by the condition that frequency
offset�! � !�!0 is small in comparison with both!0 and
the slowest rate of relaxation processes in oscillatorrel,
such as amplitude relaxation. In tuned oscillators,rel is
of the order of!0=Q, whereQ is the quality factor of the
resonator, while in low-Q oscillatorsrel � !0. Therefore
this frequency range is often defined by:

�! � !0 ; !0=Q : (2)

(This and other conditions, which usually follow from (2)
for practical oscillators but are interesting theoretically, are
derived in the Appendix). For example,
(t) can be induced
by a variation in parasitic capacitance in the circuit that af-
fects the resonant frequency of the tank, such as gate-to-
source capacitance in a FET-based oscillator. For voltage-



dependent capacitance, such a variation can be induced by
slow fluctuations in the short-term average voltage across
the capacitance due to flicker noise in the devices, e.g., 1/f
noise in the drain current of the FET. In the frequency range
defined by Eq. (2), the oscillator spectral density with re-
spect to the carrier is given by the spectrum of the random
process

V (t) = e
j!0t+j

R
t

0

(t1)dt1 � ej!0t+j�(t)

, where�(t) is the low-frequencypart of the random fre-
quency shift during time intervalt. In other words, spectral
components of the random frequency shift at frequencies
larger than�! do not affect the lineshape in the frequency
region of Eq. (2) and can be neglected.

A single stationary or cyclostationary source of flicker
noise results in fluctuations in
(t) and �(t) with power
spectral density

S
(!) =
K

!�
; S�(!) = K

1� cos(!t)

!�+2
; (3)

where� is the flicker noise exponent, andK is the propor-
tionality factor.

The linear approaches to phase noise [1, 2, 3, 4], are
based on linearizing Eq. with respect to�(t), which gives
the oscillator spectrumSV (!) that only depends onS� at
the translated frequency

SV (!) = S�(! � !0) : (4)

These approaches do not hold at very small frequency off-
sets�! where�(t � 1=�!)2 � 1. For random frequency
modulation with power spectrum we obtain from Eq. (3):

�2(t) = 2K
cos(�(1� �)=2)

�(1 + �)
�(1� �)jtj1+� � j!1tj1+� ;

(5)
where� is the gamma-function�(a) =

R
1

0
xa�1e�xdx,

and the second equality in (5) defines!1. Unless1�� � 1,
!1 is of the order of the frequency crossover between the
linear and nonlinear regimes. As� approaches1 from be-
low, !1 goes to infinity, which results in infinitely broad
noise spectrum. This divergence is related with nonstation-
arity of flicker noise in
(t) at � � 1 that leads to non-
cyclostationary noise in the oscillator output, an effect not
accounted for by the linear models.

In what follows we assume that the noise source is Gaus-
sian, which results in Gaussian
(t). The general expres-
sion relating spectra of random Gaussian frequency modu-
lation and oscillator is given by:

SV (!) �
Z
ej�(t)e�j�!tdt =

Z
e��

2(t)=2�j�!t : (6)

where the last equality is true because�(t) is Gaussian. For
white noise, i.e. for� = 0, we obtain from Eq. (5) that

�2(t) / jtj, and Eq. (6) predicts Lorentzian line shape in
agreement with [1].

A precisely Gaussian line shape would occur only for
�2(t) / t2, i.e. in the limit � ! 1 � 0. However, Eq.
(5) implies that as� approaches1, the line shape is approxi-
mately Gaussian in an increasing frequency range. To prove
this, we introduce� = 1� � and substituteexp(��2(t)=2)
in Eq. (6) by the following expansion:

e�
�2(t)
2 = e�

j!1tj
2��

2 = e�
(!1t)

2

2

�
1 +

�

2
(!1t)

2ln(j!1tj)
�
;

where for our purposes it suffices to keep only the terms up
to the first order in�. Then, the oscillator spectrum is given
by:

SV (!) =

p
2�

!1
e
�

�!2

2!2
1 +�SV (!) � SV Gauss(!)+�SV (!) ;

(7)
where

�SV (!) � �min

�
1

!1
;
!21 jln(!1=�!)j

j�!j3
�
: (8)

As � approaches zero, there is a growing spectral power
range at frequencies around�! = 0, in whichSV (j�!j)�
�SV (j�!j), and thereforeSV (j�!j) is approximately Gaus-
sian. The smooth crossover to non-Gaussian spectrum oc-
curs whenSV Gauss � �SV , which gives frequency devi-
ation�!c � !1. At extremely small�, �!c is much larger
than!1.

Now we prove that for 1/f noise, when� � 1, the power
extrapolation (3, 4) of oscillator spectrum significantly un-
derestimates spectral density in a large part of the Gaussian
regionj�!j � �!c. To this end, we estimate the ratio of
spectral densities predicted by Eqs. (4, 7) within the Gaus-
sian region at�! = !1:

SV Gauss(!0 + !1)

SV Power(!0 + !1)
� 1=!1

K=!�+21

� 1

1� � ; (9)

where the following estimate for!1, which can be derived
from Eq. (5), is used:

!1+�1 � 2K
cos �(1��)2

�(1 + �)
�(1� �) � K

1� � :

In Fig. 1, the oscillator spectrum due to purely1=f�

noise is calculated from Eqs. (5, 6) and plotted for noise
exponents� = 0:95. The proportionality factorK in Eq.
(3) is chosen to yield!1 = 1. Also shown power and Gaus-
sian approximations given by Eqs. (5) and (6) respectively.
As predicted, the spectrum is approximately Gaussian at
�! � 1, while at�! � 1 it asymptotically approaches the
power dependence. The calculations confirm that the closer
� to 1, the larger are the ranges of frequency and power over
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Figure 1: Oscillator spectrum due to1=f0:95 noise.

which the line shape is approximately Gaussian. The ratio
of SV Gauss to SV power at frequency offset�! = !1 = 1
is in agreement with estimate (9).

If the noise source has both flicker and white compo-
nents, the resulting oscillator spectrum is proportional to
the convolution of spectra due to each noise component.
The spectral density of fluctuations in
(t) has both flicker
and white components:S
(!) = K=!� + S
 white, which
results in�2(t) = j!1tj1+� + 2S
 whitejtj. If the white
noise is relatively strong in comparison with flicker noise:
S
 white � !1, then Eq. (6) yields approximately Lorentzian
line shape with no flicker region; while linear models incor-
rectly give both flicker1=!�+2 and white1=!2 regions with
the phase noise corner at frequency�! � (K=S
 white)

1=� ,
where the linear approach is not even applicable.

3. LINE SHAPE OF A LOCKED OSCILLATOR

In this section we consider how nonlinearity in phase-to-
voltage conversion affects the output spectrum of a voltage-
controlled oscillator (VC0) in a phase-locked loop (PLL).
The PLL phase detector (PD) is assumed to be linear. The
phase reference is provided by a purely monochromatic source
at frequency!0.

Let
 be the pertubation in the instantaneous frequency
of the free-running VCO caused by either the control volt-
age noise or VCO phase noise. For a second-order PLL
with the loop filterF (!) = �j=! + �z , the transfer func-
tionH(!) of 
 to phase error is given by:

H �  



=

1

�j=! +KOKDF (!)
=

j!

!2n � !2 + 2j�!n!
;

(10)
where!n =

p
K0KD is the loop bandwidth,� = j!�z=2

is the damping ratio,KO is the VCO gain, andKD is the
PD gain. From Eq. (6) we can obtain the spectrum of the
locked VCO as

SV (!) = e� 
2

�
2��(! � !0) +

Z
(e (t) (0) � 1)ej�!tdt

�

(11)
where 2 is the average square of phase jitter, and�! stands
for the frequency offset! � !0. The first term in the r.h.s.
of Eq. (11) gives the power concentrated at the reference
frequency. and will be omitted in what follows. The second
term gives the spectrum at! 6= !0.

In the linear approach to phase-to-voltage conversion,

only the first term in the expansion of(e (t) (0) � 1) is re-
tained in Eq. (11), which gives the VCO spectrum
ŜV (!) = jH(�!)j2S
(�!)) at! 6= !0. In the linear ap-
proximation, the PLL strongly suppresses VCO phase noise
at low frequency offsets�! � !n: ŜV (! 6= !0) / �!2.
However, unless the phase jitter is very small: 2 � 1,
higher-order terms in Eq. (11) need to be taken into account.
As a result, there remains less, if any, noise suppression at
�! � !n than predicted by the linear approximation. For
moderate jitter 2 � 1, Eq. (11) gives at! 6= !0

SV (!) � e� 
2

�
ŜV (!) +

Z
d!0

4�
ŜV (!

0)ŜV (�! � !0)
�

(12)
where the last term gives a very important correction to the
linear model at low offsets�! �

p
( 2)=!n.

In Fig. 2 we plot the spectrum of the VCO in a PLL with
!n = 1, � = 1=2 for five different values of 2 due to white
noise in the VCO. Contrary to the linear approximation, the
quadratic rolloff within the loop bandwidth occurs only at
sufficiently large frequency offsets�! �

p
( 2)=!n, and

gradually disappears for jitter 2 � 1.

4. SUMMARY

We demonstrate that 1/f noise injected in a free oscillator
results in an approximately Gaussian line shape very close
to the carrier, as a result of nonlinear conversion of phase
fluctuations to oscillator output voltage. The conventional
power approximation to the spectrum of the oscillator is
proven to considerably underestimate phase noise in a large
portion of this frequency region, the corrections being quite
significant at power spectral densities� �10dBc.

The same nonlinearity in phase-to-voltage conversion
strongly affects the spectrum of locked oscillators at mod-
erate and high phase jitter, even for the linear PLL phase
detector. In particular, this nonlinearity significantly deteri-
orates suppression of VCO noise within the loop bandwidth
for jitter exceeding0:5 squared radians.

The foregoing results are important not only from fun-
damental viewpoint but also for circuit and system design
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Figure 2: The locked VCO spectrum for phase jitter 2 of
0:01, 0:1, 0:5, 1, and2 ( bottom to top).

where the near-carrier phase noise is critical.

A. CONVERSION OF INJECTED NOISE TO
FLUCTUATIONS OF INSTANTANEOUS

FREQUENCY OF OSCILLATIONS

We establish several sufficient conditions on offset frequency
�! and the spectrum of injected noise, under which the
modulation noise dominates over the conversion noise [3],
i.e. the effect of the noise source on oscillator spectrum is
equivalent to slow modulation of oscillator frequency.

Consider a single noise source and represent it as a cy-
clostationary Gaussian current noise source decomposed as:

in(t) = �(�(t))ifl(t) ; (13)

whereifl(t) is a stationary Gaussian noise source with zero
mean, which accounts for spectrum ofin(t) near both DC
and harmonics of the oscillator frequency!0, and�(�) is
a periodic function of oscillator phase�(t). Constantifl
would induce a constant shift in the average oscillator fre-
quency�! be proportional toifl when the latter is suffi-
ciently small: �! = �ifl, where� is the proportional-
ity factor. If insteadifl(t) changes on the time scale�fl
much larger than the period and the longest relaxation time
�rel = 1=rel in oscillator, then
(t), the deviation in the
instantaneous oscillator frequency from!0 averaged over
the period of oscillations, is given by
(t) = �ifl(t). In
other words, quasistationary approximation with respect to
the slow pertubationifl(t) applies.

If for frequency offsets larger than given�!, oscillator
output at frequency!0+�! linearly depends on
(t), then
the output spectrumSV (!0+�!) depends on the spectrum

of 
(t) only at frequencies less than or equal to�!. As a
result,SV (!0 +�!) determined by the random frequency
modulation as long as:

�! � rel : (14)

A second condition is that phase noise dominates over am-
plitude noise in oscillator output voltage. Suppose that low-
frequency noise sourceifl(t) also modulates the amplitude
of oscillations, and� is a proportionality factor between
ifl(t) and the relative change in amplitude. The amplitude
noise can be neglected when

! � !0 � �=� : (15)

For practical oscillators, the ratio of relative changes in am-
plitude and instantaneous frequency due to low-frequency
noise is often of the order of the quality factorQ, then
�=� � !0=Q, and conditions (14, 15) are equivalent.

A third condition is that the noise current at frequencies
larger thanrel, for which quasistationary approximation
does not apply, should be sufficiently small not to affect os-
cillator spectrum at smaller frequency offsets�! � rel.
This is the case if the phase shift�!>rel(t) due to current
noise at frequencies! � rel is small at all times, a condi-
tion which can be expressed as follows:

�2!>rel(t) � 4

Z
1

rel

S
(!)d!=!
2 � 1 : (16)
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